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Chapter Two: The Transient Circuits 

The analysis of circuits containing inductors and/or capacitors is dependent upon the formulation and 
solution of the Integra differential equations that characterize the circuits. The solution of the 
differential equation represents a response of the circuit, and it is known by many names:  

 The source-free response may be called the natural response, the transient response, the 
free response, or the complementary function, but because of its more descriptive nature, we 
will most often call it the natural response. 

 When we consider independent sources acting on a circuit, part of the response will resemble 
the nature of the particular source (or forcing function) used; this part of the response, called 
the particular solution, the steady-state response, or the forced response.  

 In other words, the complete response is the sum of the natural response and the forced 
response.  

We will consider several different methods of solving these differential equations. The mathematical 
manipulation, however, is not circuit analysis. 

2.1 RL Circuit: 
Changing magnetic field could induce a voltage in a neighbouring circuit. This voltage is 
proportional to the time rate of change of the current producing the magnetic field. The constant of 
proportionality is what we now call the inductance, symbolized by L, and therefore 

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
 

where we must realize that v and i are both functions of time. 
Several examples of commercially available inductors are shown in Fig. 2.1. 

 
Fig. 2.1: Several different types of commercially available inductors. 

We begin our study of transient analysis by considering the simple series RL circuit shown in Fig. 
2.2. Let us designate the time-varying current as i (t); we will represent the value of i(t) at t = 0 as I0; 
in other words, i(0) = I0.We therefore have 

Ri + vL = Ri + Ldi/dt = 0 
or 

di/dt + (R/L)i = 0 
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Fig. 2.2: RL circuit. 

After separating the variables, the solution can be obtain by integrating the two sides of equation. 
Thus, 

∫
𝑑𝑖

𝑖
= −∫

𝑅

𝐿
𝑑𝑡 + 𝐾 

In 𝑖(𝑡) = −
𝑅

𝐿
𝑡 + 𝐾 

At t = 0, i(0) = I0 
ln I0 = K 

𝑙𝑛 𝑖(𝑡) = −
𝑅

𝐿
𝑡 + 𝑙𝑛𝐼଴ 

i(t) = 𝐼଴𝑒ି
ோ
௅

௧ 
Let us now consider the nature of the response in the series RL circuit. We have found that the 
inductor current is represented by 

  i(t) = 𝐼଴𝑒ି
ೃ

ಽ
௧ 

At t = 0, the current has value I0, but as time increases, the current decreases and approaches zero. 
The shape of this decaying exponential is seen by the plot of i(t)/I0 versus t shown in Fig. 2.3. 

 
Fig. 2.3: The plot of i(t)/I0 versus t. 

We designate the value of time it takes for i/I0 to drop from unity to zero, assuming a constant rate of 

decay, by the Greek letter τ (tau). Thus,  = L/R 
The ratio L/R has the units of seconds, since the exponent –(R/L)t must be dimensionless. This value 
of time τ is called the time constant and is shown pictorially in Fig. 2.4. 
An equally important interpretation of the time constant τ is obtained by determining the value of 
i(t)/I0 at t = τ . We have 

  i()/I0 = e-1 = 0.3679 
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Switch 

t = 0 

Thus, in one time constant the response has dropped to 36.8 percent of its initial value; the value of τ 
may also be determined graphically from this fact, as indicated by Fig. 2.4. It is convenient to 
measure the decay of the current at intervals of one time constant, and recourse to a hand calculator 
shows that i (t)/I0 is 0.3679 at t = τ , 0.1353 at t = 2τ , 0.04979 at t = 3τ, 0.01832 at t = 4τ , and 
0.006738 at t = 5τ. 

 
Fig. 2.4: The current in a series RL circuit is reduced to 37 percent of its initial value at t = τ, 14 

percent at t = 2τ, and 5 percent at t = 3τ. 

H.W.: In a source-free series RL circuit, find the numerical value of the ratio: (a) i (2τ)/i(τ ); (b) i 
(0.5τ)/i (0); (c) t/τ if i (t)/i (0) = 0.2; (d) t/τ if i (0) − i (t) = i (0) ln 2. 
 

General RL Circuits 
As an example, consider the circuit shown in Fig. 2.5. The equivalent resistance the inductor faces is 

Req = R3 + R4 + (R1R2/(R1 + R2)) 
and the time constant is therefore 

τ = L/Req 
If several inductors are present in a circuit and can be combined using series and/or parallel 
combination, then time constant can be further generalized to 

τ = Leq/Req 
where Leq represents the equivalent inductance. 

 
Fig. 2.5 

The Distinction between 0+ and 0− 
T = 0- represents the instant before the event. In this case, the switch has been 
closed for some considerable time. 
T = 0 is the Initial condition. The switch is closed i.e., switched on. (Short 
circuit) 
T = 0+ is the instant after the event that means the switch has just opened. (Open circuit) 
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Example 2.1: Determine both i1 and iL in the circuit shown in Fig. 2.6a for t > 0. 

 
Fig. 2.6 

Solution: 
After t = 0, when the voltage source is disconnected as shown in Fig. 2.6b, we easily calculate an 
equivalent inductance, 

Leq = 2 × 3/(2 + 3) + 1 = 2.2 mH 
an equivalent resistance, in series with the equivalent inductance, 

Req = 90(60 + 120)/(90 + 180) + 50 = 110 Ω 
and the time constant, 

τ = Leq/Req = 2.2 × 10−3/110 = 20 μs 
Thus, the form of the natural response is Ke−50,000t, where K is an unknown constant. Considering the 
circuit just prior to the switch opening (t = 0−), iL = 18/50 A. Since iL (0+) = iL(0-), we know that iL = 
18/50 A or 360 mA at t = 0+ and so 

𝑖௅ =  ቄ
360 𝑚𝐴                      𝑡 < 0
360eିହ଴,଴଴଴௧ 𝑚𝐴      𝑡 ≥ 0

 

There is no restriction on i1 changing instantaneously at t = 0, so its value at t = 0− (18/90 A or 200 
mA) is not relevant to finding i1 for t > 0. Instead, we must find i1(0+) through our knowledge of 
iL(0+). 
Using current division,  

i1(0+) = −iL(0+)(120 + 60)/(120 + 60 + 90) = −240 mA 
Hence, 

𝑖ଵ =  ቄ
200 𝑚𝐴                          𝑡 < 0
−240eିହ଴,଴଴଴௧ 𝑚𝐴      𝑡 ≥ 0

 

 
 
H.W.: At t = 0.15 s in the circuit of Fig. 2.7, find the value of (a) iL; (b) i1; (c) i2.  

 
Fig. 2.7. 
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2.2 RC Circuit: 
 
We now introduce a new passive circuit element, the capacitor. We define capacitance C by the 
voltage-current relationship 

𝑖 = 𝐶
ௗ௩

ௗ௧
  [1] 

where v and i satisfy the conventions for a passive element. From Eq. [1], 
we may determine the unit of capacitance as an ampere-second per volt, or coulomb per volt. We 
will now define the farad (F) as one coulomb per volt, and use this as our unit of capacitance. 

 
Fig. 2.8: Several examples of commercially available capacitors. 

Note: Circuits based on resistor-capacitor combinations are more common than their resistor-
inductor analogues. The principal reasons for this are the smaller losses present in a physical 
capacitor, lower cost, better agreement between the simple mathematical model and the actual 
device behaviour, and also smaller size and lighter weight, both of which are particularly important 
for integrated-circuit applications. 
Let us see how closely the analysis of the parallel (or is it series?) RC circuit shown in Fig. 2.9 
corresponds to that of the RL circuit. We will assume an initial stored energy in the capacitor by 
selecting v(0) = V0 
The total current leaving the node at the top of the circuit diagram must be zero, so we may write 

𝐶
𝑑𝑣

𝑑𝑡
+

𝜈

𝑅
= 0 

Division by C gives us 
𝑑𝑣

𝑑𝑡
+

𝜈

𝑅𝐶
= 0 

The response of the RC circuit is 

𝑣 = 𝑉଴𝑒ି
௧

ோ஼ 
The time constant of the RC circuit given by 

   = RC 
Our familiarity with the negative exponential and the significance of the time constant τ enables us to 
sketch the response curve readily (Fig. 2.10). Larger values of R or C provide larger time constants 
and slower dissipation of the stored energy. 

Fig. 2.9: RC circuit. 
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Fig. 2.10: RC circuit response. 

General RC Circuits 
If the circuit has more than one resister and more than one capacitor, but they may be replaced 
somehow using series and/or parallel combinations with an equivalent resistance Req and equivalent 
capacitance Ceq, then the circuit has an effective time constant given by 

   = ReqCeq 
Example 2.2: Find v(0+) and i1(0+) for the circuit shown in Fig. 2.11a if v(0−) = V0. 

 
Fig. 2.11 

Solution: 
We first simplify the circuit of Fig. 2.11a to that of Fig. 2.11b, enabling us to write 

v = V0e−t/(ReqC) 
where 

v(0+) = v(0−) = V0 and Req = R2 + R1R3/(R1 + R3) 
Every current and voltage in the resistive portion of the network must have the form Ae−t/(ReqC), 
where A is the initial value of that current or voltage. Thus, the current in R1, for example, may be 
expressed as 

i1 = i1(0+)e−t/τ     
where 

τ = (R2 + R1//R3)C 
and i1(0+) remains to be determined from the initial condition. Any current flowing in the circuit at t 
= 0+ must come from the capacitor. Therefore, since v cannot change instantaneously, v(0+) = v(0−) = 
V0 and 

𝑖ଵ(0ା) =  ൮
𝑉௢

ቀ𝑅ଶ  +
𝑅ଵ𝑅ଷ

𝑅ଵ  +  𝑅ଷ
ቁ

൲ ൬
𝑅ଷ

𝑅ଵ +  𝑅ଷ
൰ 



Electric Circuits Analysis   2nd Year 

 
 

 
26 | Electrical Engineering Department/Basrah University      Dr. Mofeed Turky Rashid 
 
 

 
H.W.: Find values of vC and vo in the circuit of Fig. 2.12 at t equal to (a) 0−; (b) 0+; (c) 1.3 ms. 

 
Fig. 2.12 

Example 2.3: For the circuit of Fig. 2.13a, find the voltage labelled vC for t > 0 if vC(0−) = 2 V. 

 
Fig. 2.13 

Solution: 
The dependent source is not controlled by a capacitor voltage or current, so we can start by finding 
the Thévenin equivalent of the network to the left of the capacitor. Connecting a 1Atest source as in 
Fig. 2.13b, 

Vx = (1 + 1.5i1)(30) 
where 

i1 = Vx 20/(20(10+20)) = Vx/30 
Performing a little algebra, we find that Vx = −60 V, so the network has a Thévenin equivalent 
resistance of −60 Ω (unusual, but not impossible when dealing with a dependent source). Our circuit 
therefore has a negative time constant 

τ = −60(1 × 10−6) = −60 μs 
The capacitor voltage is therefore 

𝑣஼(𝑡)  =  𝐴𝑒௧/଺଴×ଵ଴షల  V 
where A = vC(0+) = vC(0−) = 2 V. Thus, 

𝑣௖(𝑡) = 2𝑒௧/଺଴×ଵ଴షల
  V  

which, interestingly enough is unstable: it grows exponentially with time. This cannot continue 
indefinitely; one or more elements in the circuit will eventually fail. 
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H.W.: (a) Regarding the circuit of Fig. 2.14, determine the voltage vC(t) for t > 0 if vC(0−) = 11 V. 
(b) Is the circuit “stable”? 

 
Fig. 2.14 

 

2.3 The Unit-Step Function: 
We define the unit-step forcing function (u(t)) as a function of time which is zero for all values of its 
argument less than zero and which is unity for all positive values of its argument.  
If we let (t − t0) be the argument and represent the unit-step function by u, then u(t − t0) must be zero 
for all values of t less than t0, and it must be unity for all values of t greater than t0.  
At t = t0, u(t − t0) changes abruptly from 0 to 1. Its value at t = t0 is not defined, but its value is 
known for all instants of time that are arbitrarily close to t = t0. We often indicate this by writing 
u(t0

−) = 0 and u(t0
+) = 1. The concise mathematical definition of the unit-step forcing function is 

u(t − t଴) = ൜
0 𝑎𝑡 𝑡 < 𝑡଴

1 𝑎𝑡 𝑡 >  𝑡଴
 

 
Fig. 2.15: The unit-step forcing function, u(t − t0). 

To obtain an exact equivalent for the voltage-step forcing function, we may provide a single-pole 
double-throw switch. 

 
Fig 2.16 (a) A voltage-step forcing function is shown as the source driving a general network. (b) A 
simple circuit which, although not the exact equivalent of part (a), may be used as its equivalent in 

many cases. (c) An exact equivalent of part (a). 
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Figure 2.17 shows a current-step forcing function driving a general network. 

 
Fig. 2.17 (a) A current-step forcing function is applied to a general network. (b) A simple circuit 
which, although not the exact equivalent of part (a), may be used as its equivalent in many cases. 

Some very useful forcing functions may be obtained by manipulating the unit-step forcing function. 
Let us define a rectangular voltage pulse by the following conditions: 

𝑣(𝑡) = 𝑉଴𝑢(𝑡 − 𝑡଴) − 𝑉଴𝑢(𝑡 − 𝑡ଵ) = ൝

0 𝑎𝑡 𝑡 < 𝑡଴

𝑉଴ 𝑎𝑡 𝑡଴ < 𝑡 < 𝑡ଵ

0 𝑎𝑡 𝑡 > 𝑡ଵ

 

   
Fig. 2.18: A useful forcing function, the rectangular voltage pulse. 

H.W.: Evaluate each of the following at t = 0.8: (a) 3u(t) − 2u(−t) + 0.8u(1 − t); (b) [4u(t)]u(−t); 
(c) 2u(t) sin πt. 

 The complete response is composed of two parts, the natural response and the forced 
response.  

 The natural response is a characteristic of the circuit and not of the sources. Its form may be 
found by considering the source-free circuit, and it has an amplitude that depends on both the 
initial amplitude of the source and the initial energy storage.  

 The forced response has the characteristics of the forcing function; it is found by pretending 
that all switches were thrown a long time ago. Since we are presently concerned only with 
switches and dc sources, the forced response is merely the solution of a simple dc circuit 
problem. 
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Driven RL circuits consist of a battery whose voltage is V0 in series with a switch, a resistor R, and 
an inductor L. 

 
Applying Kirchhoff’s voltage law to the circuit 

Ri + Ldi/dt = V0 u(t) 
Since the unit-step forcing function is discontinuous at t = 0, we will first consider the solution for t 
< 0 and then for t > 0. The application of zero voltage since t = −∞ forces a zero response, so that 

i (t) = 0  t < 0 
For positive time, however, u(t) is unity and we must solve the equation 

Ri + Ldi/dt = V0   t > 0 
The variables may be separated in several simple algebraic steps, yielding 

L di/(V0 – Ri) = dt 
and each side may be integrated directly: 

− (L/R)ln(V0 − Ri) = t + k 
In order to evaluate k, an initial condition must be invoked. Prior to t = 0, i (t) is zero, and thus i (0−) 
= 0. Since the current in an inductor cannot change by a finite amount in zero time without being 
associated with an infinite voltage, we thus have i (0+) = 0. Setting i = 0 at t = 0, we obtain 

− (L/R)ln V0 = k 
and, hence, 

− (L/R)[ln(V0 − Ri) − ln V0] = t 
Rearranging, 

(V0 – Ri)/V0 = e−Rt/L 
or 

i = (V0/R) – (V0/R)e−Rt/L   t > 0 
Thus, an expression for the response valid for all t would be 

i = [(V0/R) – (V0/R)e−Rt/L] u(t) 
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Example 2.4: For the circuit of Fig. 2.19, find i(t) for t=∞, 3−, 3+, and 100 μs after the source 
changes value. 

 
Fig. 2.19 

Solution: 
Long after any transients have died out (t →∞), the circuit is a simple dc circuit driven by a 12 V 
voltage source. The inductor appears as a short circuit, so 

i (∞) = 12/1000 = 12 mA 
What is meant by i (3−)? This is simply a notational convenience to indicate the instant before the 
voltage source changes value. For t < 3, u(t − 3) = 0. Thus, i (3−) = 0 as well. 
At t = 3+, the forcing function 12u(t − 3) = 12 V. However, since the inductor current cannot change 
in zero time, i (3+) = i (3−) = 0. 
The most straightforward approach to analysing the circuit for t > 3 s as 

𝑖(𝑡ᇱ) = ൬
𝑉଴

𝑅
−

𝑉଴

𝑅
𝑒ିோ௧ᇲ/௅൰ 𝑢(𝑡′) 

and note that this equation applies to our circuit as well if we shift the time axis such that 
t’ = t − 3 

Therefore, with V0/R = 12 mA and R/L = 20,000 s−1, 

𝑖(𝑡 − 3) = ൫12 − 12𝑒ିଶ଴଴଴଴(௧ିଷ)൯𝑢(𝑡 − 3)   mA  [1] 

which can be written more simply as 

𝑖(𝑡) = ൫12 − 12𝑒ିଶ଴଴଴଴(௧ିଷ)൯𝑢(𝑡 − 3)   mA  [2] 

since the unit-step function forces a zero value for t < 3, as required. Substituting t = 3.0001 s into 
Eq. [1] or [2], we find that i = 10.38 mA at a time 100 μs after the source changes value. 
 
H.W.: The voltage source 60 − 40u(t) V is in series with a 10 Ω resistor and a 50 mH inductor. Find 
the magnitudes of the inductor current and voltage at t equal to (a) 0−; (b) 0+; (c) ∞; (d) 3 ms. 
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Example 2.5: Determine i(t) for all values of time in the circuit of Fig. 2.20. 

 
Fig. 2.20 

Solution: 
The circuit contains a dc voltage source as well as a step-voltage source. We might choose to replace 
everything to the left of the inductor by the Thevenin equivalent, but instead let us merely recognize 
the form of that equivalent as a resistor in series with some voltage source. The circuit contains only 
one energy storage element, the inductor. We first note that 

τ = L/Req = 3/1.5 = 2 s 
and recall that i = if  + in 
The natural response is therefore a negative exponential as before: 

in = Ke−t/2  A  t > 0 
Since the forcing function is a dc source, the forced response will be a constant current. The inductor 
acts like a short circuit to dc, so that if = 100/2 = 50 A 
Thus, 

i = 50 + Ke−0.5t  A  t > 0 
In order to evaluate K, we must establish the initial value of the inductor current. Prior to t = 0, this 
current is 25 A, and it cannot change instantaneously. 
Thus, 

25 = 50 + K or K = −25 
Hence, 

i = 50 − 25e−0.5t  A  t > 0 
We complete the solution by also stating 

i = 25   A   t < 0 
or by writing a single expression valid for all t, 

i = 25 + 25(1 − e−0.5t )u(t)  A 
The complete response is sketched in Fig. 2.21. Note how the natural response serves to connect the 
response for t < 0 with the constant forced response. 
 
H.W.: A voltage source, vs = 20u(t) V, is in series with a 200 Ω resistor and a 4 H inductor. Find the 
magnitude of the inductor current at t equal to (a) 0−; (b) 0+; (c) 8 ms; (d) 15 ms. 
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Example 2.6: Find the current response in a simple series RL circuit when the forcing function is a 
rectangular voltage pulse of amplitude V0 and duration t0. 

   
Fig. 2.22 

Solution: 
We represent the forcing function as the sum of two step-voltage sources V0u(t) and −V0u(t − t0), as 
indicated in Fig. 2.22a and b, and we plan to obtain the response by using superposition. Let i1(t) 
designate that part of i (t) which is due to the upper source V0u(t) acting alone, and let i2(t) represent 
that part due to −V0u(t − t0) acting alone. Then, 

i (t) = i1(t) + i2(t) 
Our object is now to write each of the partial responses i1 and i2 as the sum of a natural and a forced 
response. The response i1(t) is familiar: 

i1(t) = (V0/R)(1 − e−Rt/L )   t > 0 
Note that this solution is only valid for t > 0 as indicated; i1 = 0 for t < 0. 
We now turn our attention to the other source and its response i2(t). 
Only the polarity of the source and the time of its application are 
different. There is no need therefore to determine the form of the 
natural response and the forced response; the solution for i1(t) enables 
us to write  

i2(t) = −(V0/R)[1 − e−R(t−to)/L ]   t > t0 
where the applicable range of t, t > t0, must again be indicated; and i2 
= 0 for t < t0.  
We now add the two solutions, but do so carefully, since each is valid 
over a different interval of time. Thus,  

i (t) = 0    t < 0   [1] 
i (t) = (V0/R)(1 − e−Rt/L)  0 < t < t0  [2]  

and 
i (t) = (V0/R)(1 − e−Rt/L ) – (V0/R)(1 − e−R(t−to)/L )   t > t0  

or more compactly, 
i (t) = (V0/R)e−Rt/L (eRto/L − 1) t > t0   [3] 
 

  
 

Fig. 2.23. Two possible response 
curves are shown for the circuit of 
Fig. 8.39b. (a) τ is selected as t0 /2. 

(b) τ is selected as 2t0.  
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H.W.: The circuit shown in Fig. 2.24 has been in the form shown for a very long time. The switch 
opens at t = 0. Find iR at t equal to (a) 0−; (b) 0+; (c) ∞; (d) 1.5 ms. 

 
Fig. 2.24 

 
Example 2.7: Find the capacitor voltage vC(t) and the current i(t) in the 200 Ω resistor of Fig. 2.25 
for all time. 

 
Fig. 2.25 
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Solution: 
We begin by considering the state of the circuit at t < 0, corresponding to the switch at position a as 
represented in Fig. 2.25b. As usual, we assume no transients are present, so that only a forced 
response due to the 120 V source is relevant to finding vC(0−). Simple voltage division then gives us 
the initial voltage, 

vC(0) = (50/(50 + 10))(120) = 100 V 
Since the capacitor voltage cannot change instantaneously, this voltage is equally valid at t = 0− and t 
= 0+. 
The switch is now thrown to b, and the complete response is 

vC = vCf  + vCn 
The corresponding circuit has been redrawn in Fig. 2.25c for convenience. The form of the natural 
response is obtained by replacing the 50 V source by a short circuit and evaluating the equivalent 
resistance to find the time constant (in other words, we are finding the Thevenin equivalent 
resistance “seen’’ by the capacitor): 

Req = 50//200//60 = 24 Ω 
Thus, 

vCn = Ae−t/ReqC = Ae−t/1.2 
In order to evaluate the forced response with the switch at b, we wait until all the voltages and 
currents have stopped changing, thus treating the capacitor as an open circuit, and use voltage 
division once more: 

vCf = 50((200//50)/(60 + 200//50)) = 20 V 
Consequently, 

vC = 20 + Ae−t/1.2 V 
and from the initial condition already obtained, 100 = 
20 + A or  

vC = 20 + 80e−t/1.2 V t ≥ 0 
and 

vC = 100 V t < 0 
This response is sketched in Fig. 2.26a; again the 
natural response is seen to form a transition from the 
initial to the final response. Next we attack i (t). This 
response need not remain constant during the instant of 
switching. With the contact at a, it is evident that i = 
50/260 = 192.3 milliamperes. When the switch moves 
to position b, the forced response for this current 
becomes 
if = (50/(60 + 50*200/(50 + 200)))(50/(50 + 200) = 0.1 
ampere 
The form of the natural response is the same as that 
which we already determined for the capacitor voltage: 

in = Ae−t/1.2 
Combining the forced and natural responses, we obtain 

Fig. 2.26 
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i = 0.1 + Ae−t/1.2 amperes 
To evaluate A, we need to know i (0+). This is found by fixing our attention on the energy-storage 
element (the capacitor). The fact that vC must remain 100 V during the switching interval is the 
governing condition which establishes the other currents and voltages at t = 0+. 
Since vC(0+) = 100 V, and since the capacitor is in parallel with the 200 Ω resistor, we find i (0+) = 
0.5 ampere, A = 0.4 ampere, and thus 

i (t) = 0.1923 ampere t < 0 
i (t) = 0.1 + 0.4e−t/1.2 ampere t > 0 

or 
i (t) = 0.1923 + (−0.0923 + 0.4e−t/1.2)u(t) amperes 

where the last expression is correct for all t. 
The complete response for all t may also be written concisely by using u(−t), which is unity for t < 0 
and 0 for t > 0. Thus, 

i (t) = 0.1923u(−t) + (0.1 + 0.4e−t/1.2)u(t) amperes 
This response is sketched in Fig. 2.26b. Note that only four numbers are needed to write the 
functional form of the response for this singleenergy-storage-element circuit, or to prepare the 
sketch: the constant value prior to switching (0.1923 ampere), the instantaneous value just after 
switching (0.5 ampere), the constant forced response (0.1 ampere), and the time constant (1.2 s). The 
appropriate negative exponential function is then easily written or drawn. 
 
H.W.: For the circuit of Fig. 2.27, find vC(t) at t equal to (a) 0−; (b) 0+; (c) ∞; (d) 0.08 s. 

 
Fig. 2.27 

  


